Note
Go to the end to download the full example code.
PyMechanical shell workflow#
This example shows how to set up a simple shell model with PyACP and PyMechanical:
The geometry is imported into Mechanical and meshed.
The mesh is exported to ACP.
A simple lay-up is defined in ACP.
Plies and materials are exported from ACP, and imported into Mechanical.
Boundary conditions are set in Mechanical.
The model is solved.
The results are post-processed in PyDPF Composites.
Warning
The PyACP / PyMechanical integration is still experimental. Refer to the limitations section for more information.
Import modules and start the Ansys products#
Import the standard library and third-party dependencies.
from concurrent.futures import ThreadPoolExecutor
import pathlib
import tempfile
import textwrap
Import PyACP, PyMechanical, and PyDPF Composites.
# isort: off
import ansys.acp.core as pyacp
import ansys.dpf.composites as pydpf_composites
import ansys.mechanical.core as pymechanical
Start the ACP, Mechanical, and DPF servers. We use a ThreadPoolExecutor
to start them in parallel.
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(pymechanical.launch_mechanical, batch=True),
executor.submit(pyacp.launch_acp),
executor.submit(pydpf_composites.server_helpers.connect_to_or_start_server),
]
mechanical, acp, dpf = (fut.result() for fut in futures)
Get example input files#
Create a temporary working directory, and download the example input files to this directory.
working_dir = tempfile.TemporaryDirectory()
working_dir_path = pathlib.Path(working_dir.name)
input_geometry = pyacp.extras.example_helpers.get_example_file(
pyacp.extras.example_helpers.ExampleKeys.CLASS40_AGDB, working_dir_path
)
Generate the mesh in PyMechanical#
Load the geometry into Mechanical, generate the mesh, and export it to the appropriate transfer format for ACP.
mesh_path = working_dir_path / "mesh.h5"
mechanical.run_python_script(
# This script runs in the Mechanical Python environment, which uses IronPython 2.7.
textwrap.dedent(
f"""\
# Import the geometry
geometry_import = Model.GeometryImportGroup.AddGeometryImport()
import_format = Ansys.Mechanical.DataModel.Enums.GeometryImportPreference.Format.Automatic
import_preferences = Ansys.ACT.Mechanical.Utilities.GeometryImportPreferences()
import_preferences.ProcessNamedSelections = True
import_preferences.ProcessCoordinateSystems = True
geometry_file = {str(input_geometry)!r}
geometry_import.Import(
geometry_file,
import_format,
import_preferences
)
# The thickness will be overridden by the ACP model, but is required
# for the model to be valid.
for body in Model.Geometry.GetChildren(
Ansys.Mechanical.DataModel.Enums.DataModelObjectCategory.Body, True
):
body.Thickness = Quantity(1e-6, "m")
Model.Mesh.GenerateMesh()
"""
)
)
pyacp.mechanical_integration_helpers.export_mesh_for_acp(mechanical=mechanical, path=mesh_path)
Set up the ACP model#
Setup basic ACP lay-up based on the mesh in mesh_path
, and export material and composite
definition file to output_path.
composite_definitions_h5 = "ACPCompositeDefinitions.h5"
matml_file = "materials.xml"
model = acp.import_model(mesh_path, format="ansys:h5")
mat = model.create_material(name="mat")
mat.ply_type = "regular"
mat.engineering_constants.E1 = 1e12
mat.engineering_constants.E2 = 1e11
mat.engineering_constants.E3 = 1e11
mat.engineering_constants.G12 = 1e10
mat.engineering_constants.G23 = 1e10
mat.engineering_constants.G31 = 1e10
mat.engineering_constants.nu12 = 0.3
mat.engineering_constants.nu13 = 0.3
mat.engineering_constants.nu23 = 0.3
mat.strain_limits = pyacp.material_property_sets.ConstantStrainLimits.from_orthotropic_constants(
eXc=-0.01,
eYc=-0.01,
eZc=-0.01,
eXt=0.01,
eYt=0.01,
eZt=0.01,
eSxy=0.01,
eSyz=0.01,
eSxz=0.01,
)
corecell_81kg_5mm = model.create_fabric(name="Corecell 81kg", thickness=0.005, material=mat)
ros = model.create_rosette(name="ros", origin=(0, 0, 0))
oss = model.create_oriented_selection_set(
name="oss",
orientation_point=(-0, 0, 0),
orientation_direction=(0.0, 1, 0.0),
element_sets=[model.element_sets["All_Elements"]],
rosettes=[ros],
)
mg = model.create_modeling_group(name="group")
mg.create_modeling_ply(
name="ply",
ply_material=corecell_81kg_5mm,
oriented_selection_sets=[oss],
ply_angle=45,
number_of_layers=1,
global_ply_nr=0, # add at the end
)
mg.create_modeling_ply(
name="ply2",
ply_material=corecell_81kg_5mm,
oriented_selection_sets=[oss],
ply_angle=0,
number_of_layers=2,
global_ply_nr=0, # add at the end
)
Update and Save the ACP model#
model.update()
model.export_shell_composite_definitions(working_dir_path / composite_definitions_h5)
model.export_materials(working_dir_path / matml_file)
Import materials and plies into Mechanical#
Import materials into Mechanical
mechanical.run_python_script(f"Model.Materials.Import({str(working_dir_path / matml_file)!r})")
Import plies into Mechanical
pyacp.mechanical_integration_helpers.import_acp_composite_definitions(
mechanical=mechanical,
path=working_dir_path / composite_definitions_h5,
)
Set boundary condition and solve#
mechanical.run_python_script(
textwrap.dedent(
"""\
front_edge = Model.AddNamedSelection()
front_edge.Name = "Front Edge"
front_edge.ScopingMethod = GeometryDefineByType.Worksheet
front_edge.GenerationCriteria.Add(None)
front_edge.GenerationCriteria[0].EntityType = SelectionType.GeoEdge
front_edge.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationX
front_edge.GenerationCriteria[0].Operator = SelectionOperatorType.GreaterThan
front_edge.GenerationCriteria[0].Value = Quantity('-4.6 [m]')
front_edge.Generate()
back_edge = Model.AddNamedSelection()
back_edge.Name = "Back Edge"
back_edge.ScopingMethod = GeometryDefineByType.Worksheet
back_edge.GenerationCriteria.Add(None)
back_edge.GenerationCriteria[0].EntityType = SelectionType.GeoEdge
back_edge.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationX
back_edge.GenerationCriteria[0].Operator = SelectionOperatorType.LessThan
back_edge.GenerationCriteria[0].Value = Quantity('-7.8 [m]')
back_edge.Generate()
analysis = Model.AddStaticStructuralAnalysis()
fixed_support = analysis.AddFixedSupport()
fixed_support.Location = back_edge
force = analysis.AddForce()
force.DefineBy = LoadDefineBy.Components
force.XComponent.Output.SetDiscreteValue(0, Quantity(1e6, "N"))
force.Location = front_edge
analysis.Solution.Solve(True)
"""
)
)
rst_file = [filename for filename in mechanical.list_files() if filename.endswith(".rst")][0]
matml_out = [filename for filename in mechanical.list_files() if filename.endswith("MatML.xml")][0]
Postprocess results#
Evaluate the failure criteria using the PyDPF Composites.
max_strain = pydpf_composites.failure_criteria.MaxStrainCriterion()
cfc = pydpf_composites.failure_criteria.CombinedFailureCriterion(
name="Combined Failure Criterion",
failure_criteria=[max_strain],
)
composite_model = pydpf_composites.composite_model.CompositeModel(
composite_files=pydpf_composites.data_sources.ContinuousFiberCompositesFiles(
rst=rst_file,
composite={
"shell": pydpf_composites.data_sources.CompositeDefinitionFiles(
definition=working_dir_path / composite_definitions_h5
),
},
engineering_data=working_dir_path / matml_out,
),
server=dpf,
)
# Evaluate the failure criteria
output_all_elements = composite_model.evaluate_failure_criteria(cfc)
# Query and plot the results
irf_field = output_all_elements.get_field(
{"failure_label": pydpf_composites.constants.FailureOutput.FAILURE_VALUE}
)
irf_field.plot()