Note
Go to the end to download the full example code.
CDB to PyMechanical shell workflow#
This example shows how to define a composite lay-up in PyACP based on a mesh from a CDB file, import the model into PyMechanical for defining the load and boundary conditions, and run a failure analysis with PyDPF - Composites.
Warning
The PyACP / PyMechanical integration is still experimental. Refer to the limitations section for more information.
Import modules and start the Ansys products#
Import the standard library and third-party dependencies.
from concurrent.futures import ThreadPoolExecutor
import pathlib
import tempfile
import textwrap
Import PyACP, PyMechanical, and PyDPF - Composites.
# isort: off
import ansys.acp.core as pyacp
from ansys.acp.core.extras import example_helpers
import ansys.dpf.composites as pydpf_composites
import ansys.mechanical.core as pymechanical
Start the ACP, Mechanical, and DPF servers. We use a ThreadPoolExecutor
to start them in parallel.
with ThreadPoolExecutor() as executor:
futures = [
executor.submit(pyacp.launch_acp),
executor.submit(pymechanical.launch_mechanical, batch=True),
executor.submit(pydpf_composites.server_helpers.connect_to_or_start_server),
]
acp, mechanical, dpf = (fut.result() for fut in futures)
Get example input files#
Create a temporary working directory, and download the example input files to this directory.
working_dir = tempfile.TemporaryDirectory()
working_dir_path = pathlib.Path(working_dir.name)
input_file = example_helpers.get_example_file(
example_helpers.ExampleKeys.BASIC_FLAT_PLATE_DAT, working_dir_path
)
Set up the ACP model#
Setup basic ACP lay-up based on the CDB file.
model = acp.import_model(path=input_file, format="ansys:cdb")
model.unit_system
Visualize the loaded mesh.
mesh = model.mesh.to_pyvista()
mesh.plot(show_edges=True)
Define the composite lay-up#
Create an orthotropic material and fabric including strain limits, which are later used to postprocess the simulation.
engineering_constants = (
pyacp.material_property_sets.ConstantEngineeringConstants.from_orthotropic_constants(
E1=5e10, E2=1e10, E3=1e10, nu12=0.28, nu13=0.28, nu23=0.3, G12=5e9, G23=4e9, G31=4e9
)
)
strain_limit = 0.01
strain_limits = pyacp.material_property_sets.ConstantStrainLimits.from_orthotropic_constants(
eXc=-strain_limit,
eYc=-strain_limit,
eZc=-strain_limit,
eXt=strain_limit,
eYt=strain_limit,
eZt=strain_limit,
eSxy=strain_limit,
eSyz=strain_limit,
eSxz=strain_limit,
)
ud_material = model.create_material(
name="UD",
ply_type=pyacp.PlyType.REGULAR,
engineering_constants=engineering_constants,
strain_limits=strain_limits,
)
fabric = model.create_fabric(name="UD", material=ud_material, thickness=1e-4)
Define a rosette and oriented selection set. Plot the orientation.
rosette = model.create_rosette(origin=(0.0, 0.0, 0.0), dir1=(1.0, 0.0, 0.0), dir2=(0.0, 0.0, 1.0))
oss = model.create_oriented_selection_set(
name="oss",
orientation_point=(0.0, 0.0, 0.0),
orientation_direction=(0.0, 1.0, 0),
element_sets=[model.element_sets["All_Elements"]],
rosettes=[rosette],
)
model.update()
plotter = pyacp.get_directions_plotter(model=model, components=[oss.elemental_data.orientation])
plotter.show()
Create various plies with different angles and add them to a modeling group.
modeling_group = model.create_modeling_group(name="modeling_group")
angles = [0, 45, -45, 45, -45, 0]
for idx, angle in enumerate(angles):
modeling_group.create_modeling_ply(
name=f"ply_{idx}_{angle}_{fabric.name}",
ply_angle=angle,
ply_material=fabric,
oriented_selection_sets=[oss],
)
model.update()
Show the fiber directions of a specific ply.
modeling_ply = model.modeling_groups["modeling_group"].modeling_plies["ply_4_-45_UD"]
fiber_direction = modeling_ply.elemental_data.fiber_direction
assert fiber_direction is not None
plotter = pyacp.get_directions_plotter(
model=model,
components=[fiber_direction],
)
plotter.show()
For a quick overview, print the model tree. Note that the model can also be opened in the ACP GUI. For more information, see View model in ACP GUI.
pyacp.print_model(model)
Save the ACP model#
cdb_filename = "model.cdb"
composite_definitions_h5_filename = "ACPCompositeDefinitions.h5"
matml_filename = "materials.xml"
model.export_analysis_model(working_dir_path / cdb_filename)
model.export_shell_composite_definitions(working_dir_path / composite_definitions_h5_filename)
model.export_materials(working_dir_path / matml_filename)
Import mesh, materials and plies into Mechanical#
Import geometry, mesh, and named selections into Mechanical
pyacp.mechanical_integration_helpers.import_acp_mesh_from_cdb(
mechanical=mechanical, cdb_path=working_dir_path / cdb_filename
)
Import materials into Mechanical
mechanical.run_python_script(f"Model.Materials.Import({str(working_dir_path / matml_filename)!r})")
Import plies into Mechanical
pyacp.mechanical_integration_helpers.import_acp_composite_definitions(
mechanical=mechanical, path=working_dir_path / composite_definitions_h5_filename
)
Set boundary condition and solve#
mechanical.run_python_script(
textwrap.dedent(
"""\
front_edge = Model.AddNamedSelection()
front_edge.Name = "Front Edge"
front_edge.ScopingMethod = GeometryDefineByType.Worksheet
front_edge.GenerationCriteria.Add(None)
front_edge.GenerationCriteria[0].EntityType = SelectionType.GeoEdge
front_edge.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationX
front_edge.GenerationCriteria[0].Operator = SelectionOperatorType.Largest
front_edge.Generate()
back_edge = Model.AddNamedSelection()
back_edge.Name = "Back Edge"
back_edge.ScopingMethod = GeometryDefineByType.Worksheet
back_edge.GenerationCriteria.Add(None)
back_edge.GenerationCriteria[0].EntityType = SelectionType.GeoEdge
back_edge.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationX
back_edge.GenerationCriteria[0].Operator = SelectionOperatorType.Smallest
back_edge.Generate()
analysis = Model.AddStaticStructuralAnalysis()
fixed_support = analysis.AddFixedSupport()
fixed_support.Location = back_edge
force = analysis.AddForce()
force.DefineBy = LoadDefineBy.Components
force.XComponent.Output.SetDiscreteValue(0, Quantity(100, "N"))
force.Location = front_edge
analysis.Solution.Solve(True)
"""
)
)
rst_file = [filename for filename in mechanical.list_files() if filename.endswith(".rst")][0]
matml_out = [filename for filename in mechanical.list_files() if filename.endswith("MatML.xml")][0]
Postprocess results#
Evaluate the failure criteria using the PyDPF - Composites.
max_strain = pydpf_composites.failure_criteria.MaxStrainCriterion()
cfc = pydpf_composites.failure_criteria.CombinedFailureCriterion(
name="Combined Failure Criterion",
failure_criteria=[max_strain],
)
composite_model = pydpf_composites.composite_model.CompositeModel(
composite_files=pydpf_composites.data_sources.ContinuousFiberCompositesFiles(
rst=rst_file,
composite={
"shell": pydpf_composites.data_sources.CompositeDefinitionFiles(
definition=working_dir_path / composite_definitions_h5_filename
),
},
engineering_data=working_dir_path / matml_out,
),
server=dpf,
)
# Evaluate the failure criteria
output_all_elements = composite_model.evaluate_failure_criteria(cfc)
# Query and plot the results
irf_field = output_all_elements.get_field(
{"failure_label": pydpf_composites.constants.FailureOutput.FAILURE_VALUE}
)
irf_field.plot()